

Date Planned ://				l	Daily Tutorial Sheet -1			Expected Duration : 90 Min		
Actual Date of Attempt ://				JE	JEE Advanced (Archive)			Exact Duration :		
1.	The energy released when an electron is added to a neutral gaseous atom is called (1982)									
2.	The h	The hydration energy of Mg^{2+} is larger than that of: (1984)								
	(A)	Al^{3+}	(B)	Na ⁺	(C)	Be^{2+}	(D)	${\rm Mg}^{3+}$		
3.	Arran	ge the following	in order o	f their:					(1985)	
	(i)	Decreasing ionic size Mg ²⁺ , O ²⁻ , Na ⁺ , F ⁻								
	(ii)	Increasing first ionisation energy Mg, Al, Si, Na								
	(iii)	4 6								
4.	On M	On Mulliken scale, the average of ionisation potential and electron affinity is known as (1985)								
5.		The softness of group IA metals increases down the group with increasing atomic number. (1986)								
6.		Compare qualitatively the first and second ionisation potentials of copper and zinc. Explain the								
0.	observation.									
7.	Arran	ge the following	in the ord	er of their	increasing size	ze : Cl ⁻ , S ²⁻ , Ca ²	²⁺ , Ar		(1986) (1986)	
8.	Arrange the following in the order of their increasing size: Cl ⁻ , S ²⁻ , Ca ²⁺ , Ar (1986) In group IA of alkali metals, the ionisation potential decreases down the group. Therefore, lithium is a									
	poor reducing agent. (1987)									
9.	The el	lectronegativity (of the follo	wing elem	ents increase	s in the order:			(1987)	
	(A)	C, N, Si, P	(B)	N, Si, C,	P (C)	Si, P, C, N	(D)	P, Si, N, C		
10.	Atomi	c radii of fluorin	e and neo	n in Angst	rom units are	e respectively gi	ven by:		(1987)	
	(A)	0.72, 1.60	(B)	1.60, 1.6	0 (C)	0.72, 0.72	(D)	None of these		
11.	The fi	rst ionization po	tential in	electron vo	olts of nitroge	n and oxygen a	toms are i	espectively giver	ı by:	
	(A)	14.6, 13. 6	(B)	13.6, 14.	6 (C)	13.6, 13.6	(D)	14.6, 14.6	(1987)	
12.	The fi	The first ionization potential of Na, Mg, Al and Si are in the order (1988)								
	(A)	Na < Mg > Al			(B)	Na > Mg > Al				
	(C)	Na < Mg < Al			(D) Na > Mg > Al					
*13.		The statements that are true for the long form of the periodic table are: (1988)								
	(A) It reflects the sequence of filling the electron in the order of sub-energy level s, p, d and f									
	(B) It helps to predict the stable valency states of the elements(C) It reflects trends in physical and chemical properties of the elements									
		(D) It helps to predict the relative ionic strength of the bond between any two elements								
*14.		The first ionization potential of nitrogen and oxygen atoms are related as follows. (1989)								
	(A)									
	(B)									
	(C)	(C) The two ionisation potential values are comparable								
	(D)	(D) The difference between the two ionisation potential is too large								
15.	Which	Which one of the following is the smaller in size? (1989)								
	(A)	N^{3-}	(B)	O^{2-}	(C)	\mathbf{F}^-	(D)	Na ⁺		